

Pokhara University

Faculty of Science and Technology

Course No.: CMP 340 Full marks: 100

Course title: Software Design and Architecture (3-1-2) Pass marks: 45

Nature of the course: Theory & Practical Time per period: 1 hour

 Total periods: 45

Level: Bachelor Program: BE

1. Course Description

Software Design and Architecture is an advanced course that builds on fundamental

software engineering principles, focusing on designing robust, scalable, and maintainable

software systems. Students will explore key concepts such as architectural styles, design

patterns, and component-based design, learning how to apply these techniques to real-

world projects. The course covers the decision-making process involved in selecting

appropriate architectural solutions and navigating trade-offs between functional and non-

functional requirements. Through case studies and hands-on projects, students will gain

experience in designing software architectures that address complex system needs,

ensuring performance, scalability, and security. This course prepares students for roles

as software designers and architects in large-scale software development projects.

2. General Objectives

● To equip students with a deep understanding of architectural styles and design

patterns to create scalable and maintainable software systems.

● To enable students to make informed architectural decisions by evaluating trade-

offs and balancing system performance, security, and flexibility.

● To develop proficiency in applying advanced design principles such as SOLID,

DRY, and component-based design for efficient system development.

● To provide practical knowledge of architecture validation methods to ensure that

architectural designs meet both functional and non-functional requirements.

● To prepare students to design software for emerging technologies such as

distributed systems, microservices, cloud-native applications, and highly

available systems.

3. Methods of Instruction

3.1.General instructional Techniques: Lecture, discussion, readings.

3.2.Specific instructional Techniques: Lab works, case study

4. Contents in Detail.

Specific Objectives Contents

- To understand the

fundamental concepts of

software design and

architecture.

Unit 1: Introduction to Software Design and

Architecture (6 hrs)

1.1 Overview of software design and architecture

1.2 Design levels: Architectural vs. detailed

design

1.3 Design principles (modularity, abstraction,

separation of concerns)

1.4 The role of the software architect

1.5 Key design goals: Performance, scalability,

maintainability

1.6 Relationship between software design and

software architecture

1.7 Object Oriented Software Development:

Unified Software Development Process

- To explore various

architectural styles and

patterns and their impact

on system quality.

- To apply design patterns to

solve common design

challenges.

Unit 2: Architectural Styles and Patterns (7 hrs)

2.1 Common architectural styles (Layered, Client-

server, Microservices, Event-driven, SOA)

2.2 Architectural patterns (MVC, Broker, Pipe and

Filter)

2.3 Design patterns (Singleton, Factory,

Observer, Strategy)

2.4 Choosing appropriate architectural styles and

patterns based on system requirements

2.5 Impact of architecture on non-functional

requirements (performance, scalability, security)

- To apply SOLID principles

and best practices for

designing modular,

maintainable software.

- To understand the

importance of coupling,

cohesion, and design for

scalability.

Unit 3: Software Design Principles and Best
Practices (7 hrs)
3.1 SOLID principles and their application
3.2 DRY (Don’t Repeat Yourself) and KISS (Keep
It Simple, Stupid)
3.3 Coupling and cohesion
3.4 Reusability, modularity, and maintainability in
software design
3.5 Design for change and scalability
3.6 Separation of concerns and information hiding
3.7 Case Study: Implementation of SOLID
Principles in the Development.

- To design reusable and

maintainable software

components and manage

component lifecycles.

- To understand component

composition, integration,

and communication in

large-scale systems.

Unit 4: Component-Based Software Design (6 hrs)
4.1 Introduction to component-based

development

4.2 Components, interfaces, and contracts

4.3 Component composition, integration, and

communication

4.4 Designing reusable and maintainable

components

4.5 Component lifecycle management and

versioning

4.6 Component-based design in large-scale

systems

- To evaluate architectural

trade-offs and balance

functional and non-

functional requirements.

Unit 5: Architectural Decision-Making and Trade-

offs (6 hrs)

5.1 Architectural decision-making process

5.2 Balancing functional and non-functional

requirements

5.3 Trade-offs in architecture (e.g., performance

vs. scalability, security vs. flexibility)

5.4 Risk analysis and mitigation strategies in

architecture

5.5 Justifying architectural decisions and

documenting trade-offs

5.6 Case study: A system developed using

Microservices Architecture

- To understand and apply

methods for evaluating and

validating software

architectures.

Unit 6: Software Architecture Evaluation and

Validation (6 hrs)

6.1 Architecture evaluation methods (ATAM,

CBAM)

6.2 Scenario-based architecture validation

6.3 Architecture reviews and continuous

validation

6.4 Assessing architecture against system

qualities (performance, security, usability)

6.5 Tools for architecture evaluation and

validation

6.6 Architecture evaluation in agile and DevOps

environments

- To design for distributed

systems, microservices,

and cloud-native

architecture.

- To understand advanced

design strategies for

concurrency, fault

tolerance, and high

availability.

Unit 7: Advanced Topics in Software Design and

Architecture (7 hrs)

7.1 Designing for distributed systems and cloud-

native architecture

7.2 Microservices and serverless architecture

7.3 Domain-Driven Design (DDD)

7.4 Designing for concurrency and parallelism

7.5 Fault tolerance and high availability

5. List of Tutorials:

The following tutorial activities of 15 hours per group of maximum 24 students should be

conducted to cover all the required contents of this course.

S.N. Tutorials

1 Case study on design Patterns Workshop

2 Case study on Domain-Driven Design (DDD)

3 Discussion on Microservices Architecture Simulation:

4 Case study on ATAM Evaluation

5 Discussion on Scenario-Based Architecture Evaluation:

6 Discussion on Clean Architecture Coding

7 Case study on Event-Driven Architecture Design

6.List of Practical

The following Practical works of 30 hours per group of maximum 24 students should be
conducted to cover all the required contents of this course.

7. Evaluation system and Students’ Responsibilities

Internal Evaluation

The internal evaluation of a student may consist of assignments, attendance, test-exams, term-

exams, lab reports and projects etc. The tabular presentation of the internal evaluation is as follows:

S.N. Practical

1 Students will explore and apply common design patterns such as

Singleton , Factory Observer, Strategy by working in pairs to

implement a simple application..

2 Students will model a given domain using Domain-Driven Design

principles. They will identify key entities and relationships, create a

domain model diagram, and explain their design choices to the

class.

3 Students will design a microservices architecture for a specified use

case, breaking down the system into services and defining their

interactions. They will present their architecture and discuss

deployment strategies and potential challenges.

4 Using the Architecture Tradeoff Analysis Method (ATAM), students

will evaluate a provided software architecture based on quality

attributes and trade-offs. They will complete an evaluation checklist

and present their findings and recommendations.

5 Students will create and analyze scenarios to assess the

effectiveness of a given software architecture. They will determine

how well the architecture meets specific quality attributes and

present their evaluation results.

6 Students will refactor a provided codebase to adhere to Clean

Architecture principles, focusing on separation of concerns and

maintainability. They will discuss their refactoring approach and the

improvements made.

7 Students will design an event-driven system for a given problem,

identifying events, event handlers, and communication patterns.

They will present their system design and address potential

challenges and scalability issues.

External Evaluation Marks Internal Evaluation Weight Marks

Semester-End examination 50 Attendance 10%

50 Tutorial/Case
Studies

40%

 Term exam 50%

 50 Internal Final 100% 50

Full Marks 50+50= 100

Student Responsibilities:

Each student must secure at least 45% marks in internal evaluation with 80% attendance in the

class in order to appear in the Semester-End Examination. Failing to get such score will be given

NOT QUALIFIED (NQ) and the student will not be eligible to appear the Semester-End

Examination. Students are advised to attend all the classes and complete all the assignments within

the specified time period. If a student does not attend the class(es), it is his/her sole responsibility

to cover the topic(s) taught during the period. If a student fails to attend a formal exam, test, etc.

there won’t be any provision for re-exam.

7. Prescribed Books and References

Books and Standards

1. Bass, L., Clements, P., & Kazman, R. (2021). Software architecture in practice

(4th ed.). Addison-Wesley. ISBN: 978-0321815736

2. Evans, E. (2004). Domain-driven design: Tackling complexity in the heart of

software. Addison-Wesley. ISBN: 978-0321125217

3. Kruchten, P. (2004). The rational unified process: An introduction (3rd ed.).

Addison-Wesley. ISBN: 978-0321197700

4. IEEE Standards Association. (2017). IEEE Std 1471-2000 - IEEE recommended

practice for architectural description of software-intensive systems.

5. ISO/IEC/IEEE 42010:2011 - Systems and software engineering — Architecture

description.

Online Resources

1. Software Engineering Body of Knowledge (SWEBOK). (n.d.). SWEBOK Guide.

2. IEEE Xplore Digital Library. IEEE software engineering standards.

3. Kazman, R., Bass, L., & Abowd, G. (2000). Scenario-based analysis of software

architecture. ACM SIGSOFT Software Engineering Notes, 25(1), 37-48.

Supplement Materials

Books

1. Kleppmann, M. (2017). Designing data-intensive applications: The big ideas

behind reliable, scalable, and maintainable systems. O'Reilly Media. ISBN: 978-

1449373320

2. Martin, R. C. (2017). Clean architecture: A craftsman's guide to software structure

and design. Prentice Hall. ISBN: 978-0134494166

	Supplement Materials

